
N90-27307

THE INTEGRATION OF AUTOMATED KNOWLEDGE ACQUISITION

WITH COMPUTER-AIDED SOFTWARE ENGINEERING

FOR SPACE SHUTTLE EXPERT SYSTEMS

Dr. Kenneth L. Modesitt

Head, Department of Computer Science

Western Kentucky University

Bowling Green, KY 42101

ABSTRACT: The phrase "expert systems" will disappear within ten

years. Somewhat less likely to suffer the same fate will be the

term "knowledge acquisition." The field of software engineering

will expand to include both of these terms, wherein expert

systems will be a form of advanced software engineering. The

incorporation will permit more complex domains to be addressed,

and the unique qualities of expert systems will render the

resulting software more transparent. System specification and

requirements analysis will be augmented by knowledge acquisition

techniques to enable prototypes to appear earlier for customer

inspection, with the end result beinq a software product for

which the customer has a real need, and which performs up to her

expectations (Ref. 2)

The current qualities of expert systems will become embodied

in various components of software engineering methodologies and

end products. The most likely candidate for this process in

Computer Aided Software Engineering (CASE) tools. For once, we

in the software engineering world will not have to continue to

be the shoemaker's children. We have constructed powerful,

useful, and extensible automated tools for our own use, rather

than only building them for others. The features of expert

systems will be used in most parts of CASE, including needs

assessment, requirements analysis, design, implementation,

testing, and maintenance and enhancement. Project planning,

documentation and software quality assurance will also benefit.

The growing interest in "reverse" software engineering, of going

from existing ill-structured and non-documented code to modular

design representations, will be a ripe field for expert system
contributions. The critical nature of user interfaces will be

addressed by our expertise in transparency and explanation-based

learning of expert systems.

Many of the above "predictions" are not really futuristic at

all. They were incarnated in the process of constructing an

automated test analysis computer system for the Space Shuttle

Main Engine (SSME) by the Rocketdyne Division of Rockwell

International (Refs. 3,4,5). The development effort was

successful in bringing the system SCOTTY on-line in June, 1988

at somewhat over 25% of the eventual full system, in terms of

thoroughness of the SSME test analysis procedure. Progress has

continued to date, and has spawned other automated SSME systems,

plus ones related to other Rocketdyne programs such as

expendable launch vehichles, the engines for the National

Aerospace Plane, and the Space Station power system.

301



This successful development was made possible by an optimal

mix of vision, personnel, tools, procedures and management. The

personnel included an excellent young mechanical and aerospace

engineering staff, and a knowledge engineer with both industry

and academic credentials. The tools were recommended by the

knowledge engineer, and included both an industrial-strength

inductive Expert System Building Tool, running on a multi-

processor supermini computer from Concurrent Computer

Corporation, as well as a PC-based CASE tool.

Management direction was given by an enthusiastic senior

technical manager who was very well respected in the company,

and who had realistic expectations about expert system

abilities. He also ensured that the personnel and financial

committments to the program were long-term ones.

Since the knowledge engineer had a substantial background in

software engineering, both as a practicing professional and as

an academic since 1963, it was natural that the "front-end" of

the development effort would receive considerable attention.

The desireability of this front-loading has manifested itself

innumerable times throughout the software industry in the

savings accrued in the "back-end" of the software life cycle.

Maintenance, including all three types: corrective, perfective,

and adaptive, has long been recognized as the real cost driver

in software.

Consequently, a great deal of attention was paid to the

interactions among the expert, the user, the protoype system,

and the knowledge engineer. Many alternatives were considered

for this knowledge acquisition process. The recent book by

Karen McGraw and Karan Harbison-Briggs (Ref. i), with a preface

by this author, would have been invaluable. Figure 1 for some

knowledge acquisition alternatives is from the book.

KNOWLEDGE SOURCE KNOWLEDGE ACOUISITION MODE

DATA

_MAN lXPI_T N_I_ PR_M

'tEXT TEXT _lDlmS_klN_l_ P_IRAM

Figure 1. Variations in Possible Knowledge Acquisition

Mode

(Reprinted with permission of Prentice-Hall

from Knowledge Acquisition: Principles and

Guidelines by Karen McGraw and Karan

Harbison-Briggs, 1989.)

3O2



Initially, in 1984, a small PC-based inductive system was

used to demonstrate a feasibility prototype. This took only a

few days, with the expert quickly learning the tool, and

appreciating the power, vs. having to codify his own rules. The

order-of-magnitude increase of having the expert express his

knowledge as examples, and then having the ESBT generating the

rules was obvious, and has been well-documented many times since

then. It was also obvious that a more powerful tool would be

required for a production test analysis system. The vendor of

the small tool was just ready to announce such a product, which

was a near-ideal fit. In addition to induction, it also

generated Fortran code, which is the lingua franca of the

engineering world. This is critical as the code output by the

ESBT is readable, i.e., not "magic", and it is trivial to

interface it to the 100K+ lines of Fortran code which already

exist for SSME software support, plus new codes which would

surely be written in the future.

Good management practices and documentation guidelines

dictated that all of this effort be tracked. Requirement

documents were generated, as were data flow diagrams and

structure charts. These were invaluable in not becoming lost as

SCOTTY grew in complexity. Moreover, the tools used in CASE

were easily grasped by the mechanical engineers. The fact that

expert system tools were being used did no____tobviate the fact

that it was still very much of a software engineering process,

albeit in a complex domain.

In the future, it is clear that expert systems and software

engineering will intertwine even more closely. A few such

considerations include data bases, and automatic code generation

from structure chart modules. In the case of the latter, the

author and a colleague were the ffrst to build an interface

which permitted the ESBT to interact with the millions of bytes

of test data from the 1000+ previous SSME tests. This interface

has now been expanded by a joint venture between Intelligent

Terminals Ltd. and Concurrent Computer Corporation to become a

commercial product. In the case of the latter feature --

automatic code generation -- it will not be long before a CASE

vendor adds inductive programming to the tool chest.

In summary, a prediction was made that the terms "expert

systems" and "knowledge acquisition" would begin to disappear

over the next several years. This is not because they are

falling into disuse; it is rather that practitioners are

realizing that they are valuable adjuncts to software

engineering, in terms of problem domains addressed, user

acceptance, and in development methodologies. A specific

problem domain was discussed, that of constructing an automated

test analysis system for the Space Shuttle Main Engine. In this

domain, knowledge acquisition was part of requirements systems

analysis, and was performed with the aid of a powerful inductive

ESBT in conjunction with a CASE tool. The original prediction

is not a very risky one -- it has already been accomplished!

303



References

i. McGraw, K. and K. Harbison-Briggs, Knowledge Acquisition:

Principles and Guidelines, Prentice-Hall, 1989.

2. Modesitt, K., "Inductive Learning in Engineering". Tutorial

for the International Special Interest Group on Inductive

Programming, Detroit, MI, April, 1989.

3. Modesitt, K., "Experience with Commercial Tools Involving

Induction on Large Databases for Space Shuttle Main Engine

Testing," Invited talk for Fourth International Expert Systems

Conference, London, England, 1988, pp. 219-229.

4. Modesitt, K., "Space Shuttle Main Engine Anomaly Data and

Inductive Knowledge Based Systems: Automated Corporate

Expertise," Third Conference on Artificial Intelligence for

Space Applications, NASA, Huntsville, 1987, pp. 203-212.

5. Modesitt, K., "Space Shuttle Main Engine Test Analysis -- A

Case Study for Inductive Knowledge-based Systems Involving Very

Large Data Bases," Co-authored with Dr. Djamshid Asgari. IEEE

Computer Society International Conference on Computers and

Application Conference (COMPSAC), Chicago, October, 1986, pp.
65-71.

304


